BLACK LIVES MATTER
Join us and donate
The premier IDE for R
RStudio anywhere using a web browser
Put Shiny applications online
Shiny, R Markdown, Tidyverse and more
Do, share, teach and learn data science
An easy way to access R packages
Let us host your Shiny applications
The premier software bundle for data science teams
RStudio for the Enterprise
Connect data scientists with decision makers
Control and distribute packages
RStudio
RStudio Server
Shiny Server
R Packages
RStudio Cloud
RStudio Public Package Manager
shinyapps.io
RStudio Team
RStudio Server Pro
RStudio Connect
RStudio Package Manager
rstudio::conf 2018 Tidyverse
Tidy spatial data analysis
February 27, 2018
Spatial data analysis has a long history in R. Tidy approaches to this are rather recent. I will discuss the special properties of spatialdata, the challenges of different tidy approaches, the work done so far, and the work in progress. The simple features for R package (sf, on CRAN) has been developed with support from the R Consortium. It replaces sp, rgdal and rgeos, and provides dplyr compatibility. A follow-up project, spatiotemporal tidy arrays for R (stars), is under development and aims at dense, spatiotemporal arrays such as time series of simple features, raster data, raster time series, climate model prediction data, and remote sensing imagery. Both projects will be presented, with a focus on how they augment the Tidyverse.
I lead the spatio-temporal modelling laboratory at the institute for geoinformatics. I hold a PhD in geosciences, and am interested in spatial statistics, environmental modelling, geoinformatics and GI Science, semantic technology for spatial analysis, optimizing environmental monitoring, but also in e-Science and reproducible research. I am an ordinary member of the R foundation. I am one of the authors of Applied Spatial Data Analysis with R (second edition), am Co-Editor-in-Chief for the Journal of Statistical Software, and associate editor for Spatial Statistics. I believe that research is useful in particular when it helps solving real-world problems.