parsnip: A tidy model interface

parsnip is a new tidymodels package that generalizes model interfaces across packages. The idea is to have a single function interface for types of specific models (e.g. logistic regression) that...

parsnip: A tidy model interface

January 24, 2019

parsnip is a new tidymodels package that generalizes model interfaces across packages. The idea is to have a single function interface for types of specific models (e.g. logistic regression) that lets the user choose the computational engine for training. For example, logistic regression could be fit with several R packages, Spark, Stan, and Tensorflow. parsnip also standardizes the return objects and sets up some new features for some upcoming packages.

View Materials

About the speaker

Max Kuhn

Max Kuhn is a software engineer at RStudio. He is currently working on improving R's modeling capabilities. He was a Director of Nonclinical Statistics at Pfizer Global R&D in Connecticut. He was applying models in the pharmaceutical and diagnostic industries for over 18 years. Max has a Ph.D. in Biostatistics. Max is the author of numerous R packages for techniques in machine learning and reproducible research and is an Associate Editor for the Journal of Statistical Software. He, and Kjell Johnson, wrote the book Applied Predictive Modeling, which won the Ziegel award from the American Statistical Association, which recognizes the best book reviewed in Technometrics in 2015. Their latest book, Feature Engineering and Selection, was published in 2019.