BLACK LIVES MATTER
Join us and donate
The premier IDE for R
RStudio anywhere using a web browser
Put Shiny applications online
Shiny, R Markdown, Tidyverse and more
Do, share, teach and learn data science
An easy way to access R packages
Let us host your Shiny applications
The premier software bundle for data science teams
RStudio for the Enterprise
Connect data scientists with decision makers
Control and distribute packages
RStudio
RStudio Server
Shiny Server
R Packages
RStudio Cloud
RStudio Public Package Manager
shinyapps.io
RStudio Team
RStudio Server Pro
RStudio Connect
RStudio Package Manager
rstudio::conf 2019 publication
R Markdown: The bigger picture
January 25, 2019
Statistics has made science resemble math, so much so that we've begun to conflate p-values with mathematical proofs. We need to return to evaluating a scientific discovery by its reproducibility, which will require a change in how we report scientific results. This change will be a windfall to commercial data scientists because reproducible means repeatable, automatable, parameterizable, and schedulable.
Garrett is the author of Hands-On Programming with R and co-author of R for Data Science and R Markdown: The Definitive Guide. He is a Data Scientist at RStudio and holds a Ph.D. in Statistics, but specializes in teaching. He's taught people how to use R at over 50 government agencies, small businesses, and multi-billion dollar global companies; and he's designed RStudio's training materials for R, Shiny, R Markdown and more. Garrett wrote the popular lubridate package for dates and times in R and creates the RStudio cheat sheets.